Do Higher Science Standards Lead to Higher Achievement?

In a recent article in Scientific American, it was suggested that the U.S. should adopt higher standards in science, and that all 50 states should adopt them.

When you check the literature on science standards, the main reason for aiming for higher standards (raising the bar) is because in the “Olympics” of international academic test taking, the U.S. never takes home the gold.  In fact, according the tests results reported by the Program for International Student Assessment (PISA), U.S. students never score high enough to even merit a bronze medal.  In the last PISA Science Olympics, Shanghai-China (population 23 million) took home the Gold, Finland (population 5.4 million) the Silver, and Hong Kong-China (population 7 million, the Bronze.  The United States (population 314 million) average score positioned them 22nd on the leaderboard of 65 countries that participated in the PISA 2009 testing.

Some would argue that comparing scores across countries that vary so much in population, ethnic groups, poverty, health care, and housing is not a valid enterprise.  We’ll take that into consideration as we explore the relationship of standards to student achievement.

Its assumed that there is a connection or correlation between the quality of the standards in a particular discipline such as science, and the achievement levels of students as measured by tests.  So the argument is promoted that because U.S. students score near the bottom of the top third of countries that took the PISA test in 2009, then the U.S. science education standards need to be ramped up.  If we ramp up the standards, that is to say, make them more rigorous and at a higher level, then we should see a movement upwards for U.S. students on future PISA tests.  It seems like a reasonable assumption, and one that has driven the U.S. education system toward a single set of standards in mathematics and reading/language arts (Common Core State Standards-CCSS), and very soon, there will be a single set of science standards.

There is a real problem here

There is no research to support the contention that higher standards mean higher student achievement.  In fact there are very few facts to show that standards make a difference in student achievement.  It could be that standards, per se, act as barriers to learning, not bridges to the world of science.

Barriers to Learning

I’ve reported on this blog research published in the Journal of Research in Science Teaching by professor Carolyn Wallace of Indiana State University that indicates that the science standards in Georgia actually present barriers to teaching and learning. Wallace analyzed the effects of authoritarian standards language on science  classroom teaching.  She argues that curriculum standards based on a content and product model of education are “incongruent” with research in science education, cognitive psychology, language use, and science as inquiry.  The Next Generation Science Standards is based on a content and product model of teaching, and in fact, has not deviated from the earlier National Science Education Standards.

Over the past three decades, researchers from around the world have shown that students prior knowledge and the context of how science is learned are significant factors in helping students learn science.  Instead of starting with the prior experiences and interests of students, the standards are used to determine what students learn.  Even the standards in the NGSS, or the CCSS are lists of objectives defining a body of knowledge to be learned by all learners.  As Wallace shows, its the individuals in charge of curriculum (read standards) that determine the lists of standards to be learned. Science content to be learned exists without a context, and without any knowledge of the students who are required to master this stuff, and teachers who plan and carry out the instruction.

An important point that Wallace highlights is that teachers (and students) are recipients of the standards, rather than having been a part of the process in creating the standards. By and large teachers are nonparticipants in the design and writing of standards. But more importantly, teachers were not part of the decision to use standards to drive school science, in the first place. That was done by élite groups of scientists, consultants, and educators.

The Brown Center Report

According to the 2012 Brown Center Report on American Education, the Common Core State Standards will have little to no effect on student achievement. Author Tom Loveless explains that neither the quality nor the rigor of state standards is related to state NAEP scores. Loveless suggests that if there was an effect, we would have seen it since all states had standards since 2003.

For example in the Brown Center study, it was reported (in a separate 2009 study by Whitehurst), that there was no correlation of NAEP scores with the quality ratings of state standards. Whitehurst studied scores from 2000 to 2007, and found that NAEP scores did not depend upon the “quality of the standards,” and he reported that this was true for both white and black students (The Brown Center Report on American Education, p.9). The correlation coefficients ranged from -0.6 to 0.08.

The higher a “cut score” that a state established for difficulty of performance can be used to define the rigor or expectations of standards. One would expect that over time, achievement scores in states that have more rigorous and higher expectations, would trend upwards. The Brown study reported it this way:

States with higher, more rigorous cut points did not have stronger NAEP scores than states with less rigorous cut points.

The researchers found that it did not matter if states raised the bar, or lowered the bar on NAEP scores. The only positive and significant correlations reported between raising and lowering the bar were in 4th grade math and reading. One can not decide causality using simple correlations, but we can say there is some relationship here.

When researchers looked at facts to find out if standardization would cut the variation of scores between states, they found that the variation was relatively small compared to looking at the variation within states. The researchers put it this way (The Brown Center Report on American Education, p. 12): The findings are clear.

Most variation on NAEP occurs within states not between them. The variation within states is four to five times larger than the variation between states.

According to the Brown Report, the Common Core will have very little impact on national achievement (Brown Report, p. 12).  There is no reason to believe that won’t be true for science.

The researchers concluded that we should not expect much from the Common Core. In an interesting discussion of the implications of their findings, Tom Loveless, the author of the report, cautions us to be careful about not being drawn into thinking that standards represent a kind of system of “weights and measures.” Loveless tells us that standards’ reformers use the word—benchmarks—as a synonym for standards. And he says that they use it too often. In science education, we’ve had a long history of using the word benchmarks, and Loveless reminds us that there are not real, or measured benchmarks in any content area. Yet, when you read the standards—common core or science—there is the implication we really know–almost in a measured way–what standards should be met at a particular grade level.

Loveless also makes a strong point when he says the entire system of education is “teeming with variation.” To think that creating a set of common core standards will cut this variation between states or within a state simply will not succeed. As he puts it, the common core (a kind of intended curriculum) sits on top of the implemented and achieved curriculum. The implemented curriculum is what teachers do with their students day-to-day. It is full of variation within a school. Two biology teachers in the same school will get very different results for a lot of different factors. But as far as the state is concerned, the achieved curriculum is all that matters. The state uses high-stakes tests to decide whether schools met Adequate Yearly Progress (AYP).

Now What?

If standards do not result in improved learning as measured by achievement tests, what should we be doing to improve schools?

Over on Anthony Cody’s blog on Education Week, we might find some answers to this question.  Cody has begun a series of dialogs with the Gates Foundation on educational reform by bringing together discussions between opposing views to uncover some common ground. Cody has already broken new ground because the Gates Foundation is not only participating with him on his website, but Gates is publishing everything on their own site: Impatient Optimists blog. Three of the five dialog posts have been written, and it is the third one written by Anthony Cody that I want to bring in here.

In his post, Can Schools Defeat Poverty by Ignoring it?, Cody reminds us that the U.S. Department of Education (through the Race to the Top and NCLB Flexibility Requests) is unwavering in its promotion of data-driven education, using student test scores to rate and evaluate teachers and administrators.  Cody believes that the Gates Foundation has used its political influence to support this.  There is also an alliance between the ED, and PARCC which is developing assessments to be aligned to the Common Core Standards.  The Gates Foundation is a financial contributor to Achieve, which oversees the Common Core State Standards, the Next Generation Science Standards, and PARCC.

There is a “no excuses” attitude suggesting that students from impoverished backgrounds should do just as well as students from enriched communities.  The idea here is that teachers make the difference in student learning, and if this is true, then it is the “quality” of the teacher that will decide whether students do well on academic tests.

Anthony Cody says this is a huge error.  In his post, he says, and later in the post uses research to tell us:

In the US, the linchpin for education is not teacher effectiveness or data-driven management systems. It is the effects of poverty and racial isolation on our children.

As he points out, teachers account for only 20% of the variance in student test scores.  More than 60% of score variance on achievement tests correlates to out-of-school factors.  Out-of-school factors vary a great deal.  However, as Cody points out, the impact of violence, health, housing, and child development in poverty are factors that far out weigh the effect of teacher on a test given in the spring to students whose attendance is attendance, interest, and acceptance is poor.

In the Scientific American article I referenced at the beginning of this post, the author cites research from the Fordham Foundation that scores most state science standards as poor to mediocre.  We debunked the Fordham “research” here, and showed that its research method was unreliable, and invalid.  Unfortunately, various groups, even Scientific American, accept Fordham’s findings, and use in articles and papers as if it a valid assessment of science education standards.  It is not.

It’s not that we don’t have adequate science standards.  It’s that if we ignore the most important and significant factors that affect the life of students in and out of school, then standards of any quality won’t make a difference.

What is your view on the effect of changing the science standards on student achievement.  Are we heading in the wrong direction?  If so, which way should we go?


Next Generation Science Standards: Old School?

Sometime ago, we argued that there is little evidence that the National Science Education Standards published in 1996 and the Next Generation Science Standards released for public view by Achieve are any different than the content oriented projects of the 1960s.  The disciplines and content areas of science were seen as fundamental in those earlier National Science Foundation funded projects such as PSSC Physics, CBA Chemistry, BSCS Biology, ESCP Earth Science, ISCS, IPS, and to the National Science Education Standards published in the 1996.

Continue reading “Next Generation Science Standards: Old School?”

Next Generation Science Standards: What’s Really Been Achieved?

Note:  This is the second in a series of posts on the Next Generation Science Standards.  You can read the first one here.

The Next Generation Science Standards (NGSS) are the latest iteration of writing science objectives for the eventual purpose of testing students’ knowledge of science.  The objectives are developed by teams of experts, and rely on either their own domain analysis chart of science, or in this case the Framework for K-12 Science Education developed by another prestigious group of educators and scientists.

The NGSS, although they are presented in an overwhelming and distinctly powerful way on Achieve’s website, when you drill down to the actual standards, you find content statements that are not very different than standards that we’ve seen in the past.

This is what I mean.

A Bit of History

Roots of the Next Generation Science Standards

Note: A good part of this discussion is based on The Art of Teaching Science, Chapter 4. com

Astrolabe, invented by the Greek astron0mer Hipparchus, later improved by Christian and then Muslim scientists.

The roots of science education as it has developed in the United States, and many countries throughout the world, has its origins in the science of the Greeks.  The works of Archimedes, Eratosthenes, and Pythagoras have been carried forward and are a part of what we call modern Western science.  The roots of what we might call modern science education can be traced to the 19th Century in Europe and especially Britain.  At that time, what we know as science was natural philosophy, which emerged from the Greek term philosophy, the love of wisdom. Glen Aikenhead writes

This Greek philosophy radically advanced in Western Europe during the 16th and 17th centuries (after the Renaissance period) with the establishment of natural philosophy, a new knowledge system based on the authority of empirical evidence and imbued with the value of gaining power and dominion over nature. This historical advance is known as the Scientific Revolution

This is where modern science began, and where we find the roots of science education as well.

Committee of Ten. For science education, however, the standards that we use today were initially created to make sure that students would be ready for college (sound familiar).  But the standards I am speaking about were written by The Committee of Ten in 1895!  Of the nine committees that were formed, three dealt with the science curriculum:  (1) physics, astronomy, and chemistry; (2) natural history; and (3) geography. Each committee formulated goals for elementary and secondary science, and described what students should know and learn, and suggested methods of teaching.  Here is what the natural history committee had to say about elementary science:

In the elementary grades, the Natural History Committee recommended and worked out the details for nature study not less than two periods per week for all grades up to high school. The first purpose of nature study is not knowledge of plants and animals, but to interest children in nature. The second purpose was to develop students’ ability to observe, compare, and express ideas (in contemporary terms, the processes of science); to cause children to form habits (habits of mind in today’s language) of careful investigation and of making clear statements of their observations. Acquisition of knowledge was the third purpose. So interest, science process and content acquisition formed the goals of nature study.  Interestingly, the committee recommended that no book be used in nature study.  Students should be observing and discussing plants and animals in the classroom or out in nature.

In the early part of the 20th Century, the nature study movement, an interdisciplinary approach to elementary science teaching, the progressive education movement, and important NSSE Yearbooks published in 1932 and 1946, and 1959, identified goals of science teaching that ought to guide the teaching of K – 12 science during those periods in science education history.

In 1957, the launch of Sputnik accelerated a movement to “modernize” science teaching.  The Golden Age of Science Education emerged with the development of NSF funded alphabet science curriculum projects, including PSSC Physcis, Chem Study, BSCS Biology, Earth Science Curriculum Project, AAAS Elementary Science, and Elementary Science Study.  These projects greatly influenced science education in the U.S., especially traditional textbook publishers by upgrading their texts and resources based on the NSF projects developed during this period.

The Florida Project

In 1972 I was invited to Florida State University to be a writer for the NSF project, the Intermediate Science Curriculum Project (ISCP), and to work on the Florida Assessment Project, a research and development project.

The task of the Florida Assessment was to write standards and assessment items for middle and high school science for Florida’s initial attempt to develop state-wide standards in science.  When I returned to Georgia State University, a team of colleagues and I submitted a proposal to the Florida Department of Education to write the K-6 Elementary Science standards (we called them objectives way back then), and test items.

We used Robert Gagne’s cognitive theory of learning which modeled a 7 stage hierarchy of learning.  We used it to categorize the standards into the 7 levels of learning. Working with high school and middle school science teachers, and doctoral students in science education, our team created a domain chart of the disciplines of science: Earth and Space Science, Physical Science, and Life Science.  The domain chart and the Gagne categories guided our work.  For each standard or objective we wrote two assessment items.

Individualized Science Instructional System

From 1974 – 1978, I was a writer, and field test coordinator of the NSF project entitled the Individualized Science Instructional System (ISIS), which was a high school science program designed to develop nearly 60 modules of science teaching for grades 9 – 12.  In this project, objectives for the entire project were written and field tested (parents, school administrators and teachers were involved).  Objectives were grouped by content, and were assigned to an author (high school teachers and university professors) to write one ISIS Module, or a mini-course.

The Global Thinking Project

In the 1990s I worked with science teachers in the U.S. and Russia, and together we wrote and field-tested the Global Thinking Project, which was an environmental science curriculum designed for middle and high school students.  We created a telecommunications network by bringing Macintosh computers, printers and models to Russia and set them up in schools around the country.  The curriculum included objectives or standards, and each of the “projects” was designed for students to investigate an important local environmental problem, use scientific tools to collect data, as needed, and the GTP network to upload data and collaborate with peers in other countries (Spain, Australia, Japan, Czech Republic, Scotland, Brazil joined the project soon after it was up and running.

NSES and State-Wide Science Standards

In 1996, the National Science Education Standards were published ushering in a new era in standards-based education and then a few years later, high-stakes testing.  The NSES were developed in the same manner as the NGSS, and countless state-wide standards and assessments around the country.

The NSES project was primarily based on Science for All Americans as part of Project 2061 of the American Association for the Advancement of Science (AAAS).  Soon after, AAAS released its Benchmarks for Scientific Literacy, and then the two-volume work entitled The Atlas of Science Literacy.

The Next Generation Science Standards comes after a long line of projects, all of which wrote curriculum, standards and objectives, and assessment materials.

Achieving the Next Generation Science Standards

Why New Standards?

In a e-Book published on this blog on the science standards movement, we argued that much of the movement to produce new standards is driven by the perception that American students don’t perform well on international tests, and on the NAEP science achievement tests.

But one can also make the argument that American students actually perform consistently and very well on these tests and have actually improved over the years.  In fact the results from the 2011 NAEP Science Assessment show that:

The average eighth-grade science score increased from 150 in 2009 to 152 in 2011. The percentages of students performing at or above the Basic and Proficient levels were higher in 2011 than in 2009. There was no significant change from 2009 to 2011 in the percentage of students at the Advanced level.

Achieve, Inc., the organization that will stand to benefit financially from the standards movement, makes it very clear that we need new standards to help improve America’s competitive edge, to boost the lagging achievement of U.S. students, to make sure students have the essential education for all careers in the modern workforce, to improve the literacy of Americans.  They fail to cite data that shows that a nation’s competitive edge is too complicated to even claim that student test scores have anything to do with; that NAEP data shows that American students have improved in science for a long time.

In whose interests is it to develop these new standards?  Try: Achieve, publishers, especially of online courses and texts, testing companies.

Who Wrote the NGSS?

According to Achieve, Inc., the writing team consisted of 41 members from 26 states.  To make sure that there is a connection between NRC’s Framework for K-12 Science Education and the NGSS, chairs of the NRC’s design teams were selected as chairs of the NGSS writing team committees.  Here is the breakdown of the writing team by field of expertise.  There are 14 teachers on the writing team, representing one-third of the writing team.  There are 12 curriculum & instruction specialists (29%), and 15 Non-K-12 educators (35%).  The panel is a distinguished group with links to their bios. But I found that one of the member identified as a high school teacher, is not teaching.  There certainly were many teachers in U.S. who would have been qualified to replace this team member.  I also note that the science education professors on the writing team do not represent a new cadre of science education professors that might bring fresh and novel ideas to the panel. Is having these individuals as chairs of the writing committees a good idea? I don’t really know. Just thinking.

I would like to know more about the process of actually writing the standards that appear online.  How were the teachers involved?  Did they participate directly in writing drafts, or did they review drafts written by others?  How did Achieve, Inc., interface with the writing team?  Did Achieve provide it own human resources to to the effort, and in what ways?

Writing Team Fields of Expertise Number of Members Percentage

Non-K-12 Educators

University Professors 10 24%
Science Education Consultants 2 4%
CEO/Private Corporations 3 7%
Non-K-12 Educators 15 35%

Curriculum Specialists

Curriculum Directors – Instructional Specialists 12 29%

K – 12 Teachers

Elementary Teachers 4 9%
Middle School Teachers 5 12%
High School Teachers 5 12%
Total Teachers 14 33%

Table 1. NGSS Writing Team Members by Expertise Area

The Nature of the Standards

The NGSS are organized like standards from the past, into content domains including: (if you click on any of these links it will bring to the NGSS for that content area.)

As you can see the standards are organized into four distinct disciplines or core areas.  If you click on any of the categories within the main content areas, you will then be at the level where you can read the standards, and also the information from the Framework for K-12 Science Education that was used to write the performance expectations.  Three columns of information are arranged to highlight these ideas:  science and engineering practices, disciplinary core ideas and crosscutting concepts.

Middle School Earth Space Science Performance Expectations

I’ve chosen the Middle School Earth Space Science (ESS) performance objectives as representative of the NGSS to evaluate.  There are Earth Space Science performance expectations at each grade level (K-HS).  Here is the complete list of Earth Space Sciences major categories extracted from the NGSS website here:

Table 2.  NGSS Earth Space Science Performance Expectation Categories for the Earth Space Sciences Domain.  Note: The links are live.
All of the topics that included in this list have been included in the previous standards iterations, including the NSES, our work on the Florida Assessment Project, the NAEP Science.  What strikes me is the linearity of the structure of the NGSS.  We have a list of topics, but there is attempt to show the content schematically perhaps using a tool such as Mindmeister where webs can be created to show how ideas interconnect and relate to one another.
Writing a set of texts for Earth and Space Science would be quite straight forward.  Give each writer a subset of the performance expectations, and assign them the task of writing a unit or mini-book of activities, projects, content, interactions that are true to the four or five standards for the topic.  When authors for the NSF curriculum project ISIS were assigned to write a content module, they were given a set of performance expectations, and told, turn these into interacting activities and content.
But in my own view, one of the major uses of the NGSS will be to create assessments that will be used to continue the madness of high-stages testing. By writing the standards as behavioral statements, it will be very easy for test construction engineers to push out lots of pineapple type questions.

Each standard is written in the form of a behavioral objective.  A good behavioral objective ought to be a statement of what students are expected to do, learn or know.  The NGSS uses the term performance expectation to define its standards, and it seems to me that this is the definition of a behavioral objective, an ideas that was at its height in the 1970s.

Inside a NGSS Standard

I’ll give you two examples from the NGSS from the Earth and Space Sciences.  This is a performance expectation from the history of the earth (MS.ESS-HE or Middle School.Earth Space Science-History of Earth):

Students who demonstrate understanding can:

  • Construct explanations for patterns in geologic evidence to determine the relative ages of a sequence of events that have occurred in Earth’s past
  • Use models of the geologic time scale in order to organize major events in Earth’s history.

Each standard included the three dimensions that NRC and Achieve describe as a vision of what it means to be proficient in science.  The blue part of the standard are meant to be the science and engineering practices—-what scientists and engineers do—construct explanations, use models, use empirical evidence, etc.  This is the “action” part of the standard, and it is designed to make assessment of the standard straight forward.  The orange part of the standard is the disciplinary core idea (the content), and the underlined part of the standard is the crosscutting concept, ideas that have application across content area such as patterns, similarity, and diversity, cause and effect, scale, and so forth.

So the Earth Space Science domain of the NGSS has 17 categories or topics as shown in Table 2.  Generally speaking there are four objectives per topic, so in all the NGSS has about 103 Earth Space Sciences standards.  We might estimate that there are slightly more than 400 science standards in the NGSS.

One can be fooled by the way content is presented on the Web.  The organizers of the NGSS did a very good job of creating a Website that can be navigated fairly easily, and also provide supporting materials.

But, in my own analysis of the standard statements, the scope and sequence of the Earth Space Science section is not new, nor does it appear to based on any structural components that would lead us to think that this concept should be introduced at the elementary level, and this concept at the middle level.

I am also concerned that there are no graphics showing how ideas relate to each other.  Science educators, of all people, should have included graphic organizers and used them to get out of their linear mode of thinking.  There are certainly many examples, and conceptual approaches to do this.  The AAAS Atlas of Literacy would be good bet.

What Can We Expect?

There is no doubt that Achieve, Inc., and its long list of partners and financial supports will charge ahead and ready the draft documents for final presentation and publication next year (at least that’s their plan).  Their long term goal is to have all of the states adopt the NGSS.  There are 26 states that are ‘lead’ partners in this effort, and although they did not have to commit to the standards, there will be great pressure for these states to do.

However there is a serious push-back occurring in the States right now over the Common Core Standards.  School districts across the country are signing petitions refusing to participate in high-stakes tests, which of course are part of standards-based reform effort.

In previous blog posts I have argued using research in the field of science education that science standards present barriers to learning.  According to research published by  Dr. Carolyn S. Wallace,  a professor at the Center for Science Education, Indiana State University, science standards are barriers to teaching and learning in science. In her research, Wallace uncovers evidence that the use of standards by practicing science teachers pose barriers to meaningful teaching and learning.  She cites two aspects of authoritarian standards that cause this barrier:

1. The tightly specified nature of successful learning performances precludes classroom teachers from modifying the standards to fits the needs of their students.

2. The standards are removed from the thinking and reasoning processes needed to achieve them.

And then she adds that these two barriers are reinforced by the use of high-stakes testing in the present accountability model of education.  Dr. Wallace’s suggestions are significant with the release of the public draft of the NGSS, and the fact that most likely the 26 states that working as partners with Achieve will adopt the NGSS as their state standards.  If most of the states did this, as was done with the Common Core State Standards in math and English/language arts, we move the country closer to a national curriculum.  But what is worse yet, there are national assessments coming in math and English/language arts, and science.  These will be used to hold all teachers hostage to a set of standards developed by very few practicing teachers.

I agree with Chemtchr’s guest post over at Anthony Cody’s blog, Living in Dialog.  Chemtchr, a high school science teacher and she explains that the NGSS is using reverse engineering to produce a product that will be used for assessment purposes, with very little teacher education.

Then she says this, and we need to take heed to her insights:

I’m not willing to pretend this is a genteel dispute among contrary theorists of education progress. The “partners” in the Common Core development include many of our largest and most powerful corporations, several with long histories of fierce monopolistic battles. Pearson Education is one partner, and the Gates Foundation is functioning as a tax-exempt advocacy arm for Microsoft itself.

Through ignorance, arrogance, or the narrowness of their self-interest, politically connected corporatists are about to perpetrate a massive for-profit take-over of science education that will do long-term damage to the very foundation of our scientific and technical infrastructure, while they devour our local and state education tax money.

If you advocate or support the development of a vibrant information technology industry, and a scientifically capable people who can actually contribute to the health and welfare of society as a whole, join us educators in our struggle to stop this huge, backwards-engineered insider deal.

What is your take on the Next Generation Science Standards?  Are they going to impact science teaching so that we’ll be more competitive, and students achievement scores will soar?

Next Generation Science Standards Online for Review

The Next Generation Science Standards are available for public view. Follow this link to the Science Standards Survey (feedback) Website.

According to Achieve, Inc., the corporation that is writing and publishing the standards:

The Next Generation Science Standards (NGSS) are distinct from prior science standards in that they integrate three dimensions within each standard and have intentional connections across standards. To provide guidance and clarification to all users of the standards, the writers have created a system architecture that highlights the NGSS as well as each of the three integral dimensions and connections to other grade bands and subjects. The standards are organized in a table with three main sections: 1) performance expectation(s), 2) the foundation boxes, and 3) the connection boxes.

Key words here are integrate, three dimensions, connections.  Additional key words are performance expectations, foundation boxes, connection boxes.

Performance Expectations

  If you go to the How to Read the Standards page, you will see the System Architecture chart, which I have shown below.

At first we are overwhelmed with information for the four space science standards that appear on the sample.  If you roll your cursor over the page, pop-ups will appear giving you more information.  Below the actual four standards shown on the page are three columns of elements that Achieve states were used to develop the four-space science objectives.  The three elements are the major dimensions recommended by the authors of the earlier Framework written by scientists hired by the NRC last summer.  Major dimensions are science and engineering practices, disciplinary core ideas, and crosscutting concepts.

Standards are written as performance expectations, and are constructed as follows:

Students who demonstrate understanding can:

Standards are performance objectives, and they read like this.


How to Read the Next Generation Science Standards. Source:, extracted May 12, 2012


Where’s the Beef?

The actual standards, called performance expectations appear on the top of the page of any search you do.  If you go to the search page you can choose the grade level K – high school) and the discipline (Earth and Space Sciences; Engineering, Technology, and Applications of Science; Life Sciences; and Physical Sciences.

According to Achieve, Inc., the next generation standards are written as student performance expectations. This is a key difference in the NGSS compared to current standards. These statements each incorporate a practice, a disciplinary core idea, and a crosscutting concept.

What’s a student expectation?  It’s what the standards’ authors expect the student to know and be able to do at a particular point in time (grade level), and in a particular content area (Earth, Engineering, Physical, Life).  Performance expectations are behavioral objectives that are written in terms that allows test makers to design questions that can be used to determine if the expectation was met, or if the student reached/attained/met the objectives.

Here is another graphic that appears when you do a search for grade 5 and Earth Science.  I clicked on Earth Systems and Their Interactions.  There are eight performance expectations.  Note that the first few words are “action” or process terms,” such as use mathematical thinking, construct models, obtain-evaluate-communicate information, etc. The next part of the objective are the practices and core idea, and practices and crosscutting idea.

Here are some examples from Next Generation: Students who demonstrate understanding can:

  • Use mathematical thinking to compare the relative abundance of salt water to fresh water and analyze data to identify the major locations of fresh water.
  • Construct models to describe systems interactions for the geosphere, hydrosphere, atmosphere, and biosphere and identify the limitations of the models.
  • Obtain, evaluate, and communicate information describing the impacts human activities have on Earth systems and generate examples of actions individuals and communities have taken to conserve the Earth’s resources and environments.

Even using detailed analyses of practices, core ideas and crosscutting ideas, these standards do not appear to be any different than the previous NSES, and the many experiences we have writing objectives, and standards in the 1970s and 1980s for the Florida Assessment Project.

Here are some examples of  “standards” taken from the 1996 NSES:

  • As a result of activities in grades 5 – 8 , all students should develop understanding of personal health
  • As a result of activities in grades 9 – 12 , all students should develop understanding of conservation of energy and increase in disorder.
  • As a result of activities in grades 9 – 12 , all students should develop understanding of the origin and evolution of the universe

Here are some examples of the Georgia Science Standards:

  • Students will explore the importance of curiosity, honesty, openness, and skepticism in science and will exhibit these traits in their own efforts to understand how the world works.
  • Students will understand the effects of the relative positions of the earth, moon and sun.
  • Students will understand the effects of the relative positions of the earth, moon and sun.

The Next Generation Standards are more detailed, and define in more specific way what students should know and be able to do.

But why do we do this?  And is it going to make any difference in achievement test scores?  Especially high-stakes tests?  Let’s take a look.

Science Standards, Grade 5, Earth Science, Earth Systems & Their Interactions

Is it Worth It?

Dr. Yong Zhao would say no.  Dr. Yong Zhao,  Presidential Chair and Associate Dean for Global Education, College of Education at the University of Oregon. He is a fellow for the International Academy for Education. Zhao was born in China’s Sichuan Province and is author of Catching Up or Leading the Way (ASCD, 2009).

Dr. Zhao has already spoken out against the Common Core Standards, and questions whether these standards will produce world class learners.  He suggests that the Common Core Standards initiative won’t make a difference, and he cites the study done by Tom Loveless of the Brookings Institute in 2012.

The 2012 Report on American Education published by The Brown Center on Education Policy at the Brookings Institute focused on education policy as it affects student learning.

The report examined three aspects of American education including the effect of the common core on learning, the achievement gaps on NAEP, and how international tests are misinterpreted.

According to the report, the common core will have little to no effect on student achievement.  It suggested that:

Despite all the money and effort devoted to developing the Common Core State Standards—not to mention the simmering controversy over their adoption in several states—the study foresees little to no impact on student learning. That conclusion is based on analyzing states’ past experience with standards and examining several years of scores on the National Assessment of Educational Progress (NAEP).

Supporters of the standards movement have used the argument that if we “raise the bar” by writing more rigorous standards, then student achievement will increase.  In a 2009 study, also at Brookings, quality ratings of state standards as judged by the AFT and Fordham Foundation, were correlated with state NAEP scores.  Researchers found that the correlations were very weak.  According to the study, state with “weak” content standards as determined by the AFT and Fordham score about the same on NAEP as those with strong standards.  These findings of no relationship held up whether NAEP scores from 2000, 2003, 2005, 2007, or the gains from 2000 – 2007 were used in the analysis.  And they found that relationship for scores of both white and black students.

This is significant.  In nearly 8 years of data analysis of content score quality correlated with NAEP scores, we see no relationship.  The quality of the standards did not bear any improvement in academic achievement scores.

Is it worth it?  It depends who is asking the question.  And it also depends on whose interests are at stake.

I urge you to go the Next Generation Science Standards site, and explore the standards from your point of view.

Do you think that American education needs a new set of science standards?  Do you think these new standards will lead to college and career ready students?



Count Down to the Next Generation Science Standards

UPDATE: The Next Generation Science Standards are available for public view and feedback here.


According to various bloggers, the Next Generation Science Standards are to be released today for public review.  The release has been delayed twice, and hopefully we’ll see the draft of the science standards.

According to the Next Generation Science Standards site at Achieve, Inc., the standards will be available for two rounds of public feedback “to help guide the writing team.  Feedback will be aggregated and made public.”

In the run up to the development, writing and now the release of the new science standards, there has been a lot posturing, and rationalization for why America needs new science standards, and why there is the need to develop a national science assessment based on this set of standards.

Is there Research to Support this Effort?

Over on Anthony Cody’s website, Living in Dialog, he ran a post this week that conversation between Dr. Yong Zhao, Presidential Chair and Associate Dean for Global Education, College of Education at the University of Oregon.  Zhao was born in China’s Sichuan Province and is author of Catching Up or Leading the Way (ASCD, 2009),and Yvonne Siu-Runyan, professor emerita from the University of Northern Colorado, and past president of NCTE.

Here is part of the interview in which Dr. Zao was asked about the common standards and education.  Zao concluded that it’s an expensive and futile exercise that will likely cause more damages in terms of narrowing the curriculum and leading to more teaching to the test.

YSR: You are suggesting that educators and local schools must find inventive ways to educate our young to live in an ever-changing unknown world. Do you think that the Common Core State Standards can accomplish this? I just read the piece in Ed Week where Anthony Cody featured you entitled, “Yong Zhao Interview: Will the Common Core Create World-Class Learners?” In this interview you question the value of the Common Core State Standards. Why? Many think that this will help to solve the issues of inequities in our schools.

YZ: Well, I don’t. I think the best analysis of why the Common Core Standards Initiative won’t make a difference is done by Tom Loveless of the Brookings Institute in the 2012 Brown Center Report on American Education, which you can find at this link. It is based on sound research and shows the Common Core won’t improve performance, reduce the achievement gap, or increase efficiency, as the proponents have suggested.

I have written quite a lot about this initiative. The simple message is that they will not improve education. It is an expensive but futile exercise.

YSR: I know implementing the Common Core State Standards is and will continue to be expensive, but why do you think it is a futile exercise?

YZ: It is futile exercise that will likely cause more damages in terms of narrowing the curriculum and leading to more teaching to the tests.

Dr. Zao referred to the Brookings Institute research on the Common Core.  According to the report, the common core will have little to no effect on student achievement.  It suggested that:

Despite all the money and effort devoted to developing the Common Core State Standards—not to mention the simmering controversy over their adoption in several states—the study foresees little to no impact on student learning. That conclusion is based on analyzing states’ past experience with standards and examining several years of scores on the National Assessment of Educational Progress (NAEP).

The evidence is that the research does not support the principle rationale that the new standards will result in higher achievement scores of American students.

Questions about the Science Standards

In a recent publication entitled Achieving a New Generation of Common Science Standards, we have argued that there are many reasons to question the viability of the new standards.
Continue reading “Count Down to the Next Generation Science Standards”